

XI Congresso sobre Uso e Manejo do Solo (UMS 2021)

Como deixaremos o solo para as próximas gerações?

1 a 3 de dezembro, Bahía Blanca-Argentina

ALTERAÇÕES NOS ATRIBUTOS FÍSICOS DO SOLO EM FUNÇÃO DE DIFERENTES SISTEMAS DE PREPARO DO SOLO

D. H. Bandeira¹, R. Montanari², G. C. Caetano³, R. S. de Araújo⁴, T.C. Silva⁵

^{1,2,3,4,5} Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Campus de Ilha Solteira, Avenida Brasil, 56, Centro,

Ilha Solteira, São Paulo Brasil, douglas.bandeira@unesp.br, r.montanari@unesp.br, geovana.caetano@unesp.br,

raul.stabile@unesp.br, tcs.agronomia@gmail.com

Introdução

O manejo do solo exerce importância fundamental na exploração agrícola das culturas. A escolha de um correto sistema de preparo pode refletir em melhorias nos atributos físicos do solo e, consequentemente, na redução da erosão hídrica, manutenção da fertilidade e aumento no rendimento das culturas. O emprego de diferentes implementos agrícolas no preparo do. solo promove mudanças na sua estrutura, principalmente no horizonte superficial

Assim, o objetivo desse trabalho foi avaliar algumas propriedades físicas do solo em função do seu preparo com diferentes implementos agrícolas por meio da tração mecanizada e suas alterações após eventos de chuva natural.

O estudo foi conduzido entre janeiro e abril de 2021 em uma área experimental pertencente à Universidade Estadual Paulista, localizado na cidade de Selvíria, Mato Grosso do Sul, Brasil. Os tratamentos adotados foram: Aração + Gradagem (T1); Aração (T2); Escarificação + Gradagem (T3); Escarificação (T4); Sem Preparo (T5). Foram analisadas a densidade do solo (Ds), macroporosidade (Ma), microporosidade (Mi), porosidade total (PT) e estabilidade dos agregados em água (DMP), na profundidade de 0-0,10 m, antes e após a implantação dos tratamentos e após uma série de cinco chuvas erosivas, totalizando 233 mm.

Resultados e Discussão

Após os eventos de chuva natural, a maior Ds foi encontrada em T1 (1,42 g cm⁻³; p<0,05) e o menor em T4 (1,17 g cm⁻³; p<0,05). Em geral, a Ma foi maior nos tratamentos envolvendo maior mobilização do solo, sendo o maior valor encontrado em T1 (18,7%; p<0,05) e o menor valor encontrado em T5 (11,0%; p<0,05). A Mi e PT não apresentaram diferenças significativas após o preparo, mas apresentaram após os eventos de chuva, sendo a menor Mi encontrada em T2 (13,2%; p<0,05) e a maior em T5 (20,1%; p<0,05). A DMP foi reduzida em todos os tratamentos, sendo que em T5 foram obtidos os maiores valores (4,05 mm), e em T1, os menores (1,89 mm).

Tabela 01. Macroporosidade, microporosidade e porosidade total na camada de 0,0-5,0 cm, antes da instalação e após o término do experimento (média de três repetições)

Tratam. Ma		acro Micro		licro	Poros. Total	
	Antes	Após	Antes	Após	Antes	Após
			%-			
T1	15,4	18,7	35,6	34,3	51	53
T2	12,1	15,8	33,1	33,2	45,2	49
T3	13,9	16,4	36,8	35,7	50,7	52,1
T4	11,9	14,6	34,1	33,2	46	47,8
T5	10,8	11,0	39,1	37,1	49,9	38,1
CV (%)	17,1	15,9	18,1	22,7	18,2	19,9

T1: : Aração + Gradagem; T2: Aração; T3: Escarificação + Gradagem; T4: Escarificação; T5: Sem Preparo. Médias seguidas da mesma letra: minúsculas em coluna e maiúsculas não diferem entre si de acordo com o Teste de Tukey (p<0,05).

Tabela 02. Densidade do solo e diâmetro médio ponderado, antes da instalação e após o término do experimento (média das três repetições)

Tratam.	Densidade do solo		Diâmetro médio dos agregados		
	Antes	Após	Antes	Após	
	Kg c	dm ⁻³	(mm)		
T1	1,30	1,42	1,55	1,89	
T2	1,29	1,35	2,87	3,01	
T3	1,33	1,39	3,01	2,99	
T4	1,32	1,17	3,33	2,56	
T5	1,28	1,18	4,47	4,05	
CV (%)	17,8	21,7	44,1	35,7	

T1: : Aração + Gradagem; T2: Aração; T3: Escarificação + Gradagem; T4: Escarificação; T5: Sem Preparo. Médias seguidas da mesma letra: minúsculas em coluna e maiúsculas não diferem entre si de acordo com o Teste de Tukey (p<0,05).

Conclusão

O estudo demonstrou que a tração mecanizada com os diferentes implementos possui maior poder de revolvimento do solo, o que se torna benéfico quando o objetivo for a descompactação do solo, porém, seu efeito benéfico é muito curto. Ainda, o preparo sem revolvimento apresentou melhoria nas condições físicas do solo quando comparada com os demais preparos.

